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Abstract 

A Bloch-wave analysis is made of the problem 
of uncoupling surface superlattice reflections 
from fundamental reflections in transmission electron 
diffraction (TED) analysis of reconstructed surfaces. 
This uncoupling problem is proved to be of crucial 
importance in determining the structure of recon- 
structed surfaces, for example the S i ( l l l )  7 ×7 sur- 
face [Takayanagi, Tanishiro, Takahashi & Takahashi 
(1985). Vac. Sci. Technol. A3, 1502-1506; (1985). Surf 
Sci. 164, 367-392]. It is found that a complete uncoup- 
ling, weak coupling and sometimes strong coupling 
between the bulk scattering and surface superlattice 
scattering are all possible depending on the diffraction 
conditions. For a kinematical analysis of reconstruc- 
ted surfaces to be valid, a weak coupling or a complete 
uncoupling condition must be realized. General rules 
for choosing the appropriate diffraction conditions 
are given. 

I. Introduction 

Transmission electron diffraction (TED) has proved 
to be one of the most powerful techniques for struc- 
ture determination of reconstructed surfaces. One 
outstanding example of its great power is the deriva- 
tion of the dimer adatom stacking-fault (DAS) struc- 
ture of the S i ( l l l )  7×7  reconstructed surface by 
Takayanagi and his associates (Takayanagi et al., 
1985a, b). In their experiments, several TED patterns 
were taken from a thin area of the specimen (about 
30 nm or less in thickness). The TED intensities were 
then averaged among the equivalent reflections 
related by hexagonal symmetry. It was then postulated 
that, after averaging, the intensities of the surface 

superlattice reflections will retain their kinematical 
values after passing through the underlying bulk crys- 
tal. The intensities of the superlattice reflections were 
thus analyzed using kinematical (single-scattering) 
theory. 

The validity of the kinematical approximation has 
been examined theoretically using dynamical multi- 
slice calculations (Spence, 1983; Tanishiro & Takay- 
anagi, 1989). A reliability factor of 10% was declared, 
given that the incident beam is properly tilted so that 
a minimum number of strong bulk reflections are 
excited (Tanishiro & Takayanagi, 1989). However, 
the examinations of the validity of the kinematical 
approximation using multislice calculations were 
made only for Si and for some specific incident-beam 
conditions. Detailed considerations of the coupling 
and uncoupling of surface-superlattice-related scat- 
tering with bulk scattering still remain to be given. 

In principle, a more convenient theoretical frame- 
work for analyzing the problem of the coupling and 
uncoupling of the strong dynamical bulk scattering 
and the weaker surface superlattice scattering is the 
Bloch-wave method of Bethe (1928), because the 
scattering by either the surface layer or the underlying 
bulk crystal can be represented by a characteristic 
scattering matrix. The coupling between the surface- 
layer scattering and bulk scattering can then be under- 
stood by analyzing only the structure of the scattering 
matrices. It is the purpose of this paper to present 
such an analysis. It will be shown that uncoupling or 
weaker coupling of the surface superlattice diffracted 
beams and the underlying bulk-crystal scattering 
cannot be taken for granted, even for cases in which 
only superlattice reflections are excited. General rules 
for choosing the incident-beam conditions to avoid 
strong coupling are given. 
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2. General theory 

For convenience, it is assumed that the specimen is 
composed of plane parallel crystal slabs with the z 
axis normal to the surface. When the usual projected 
potential approximation is applied we can use the 
general matrix formulations given by Howie & 
Whelan (1961) and Sturkey (1962)• Following Bethe 
(1928) we write the electron wavefunction within the 
crystal as 

~(r) = E a<S)b(J)(k~s), r) 
J 

= ~ a<s)~ C~ j) exp (ik~g j) . r), (1) 
J g 

where b<J)(k (j), r) is the j th  Bloch wave, a <j) is the 
excitation amplitude, g denotes a reciprocal-lattice 
vector, k~ ) is the wavevector ( = k  ~j~ +g)  and C~ s) the 
associated plane-wave coefficients. The values of k~ j) 
and C~ s) are determined by solving the fundamental 
equation 

(K2-k2)Cg+ • Ug_hCh=O, (2) 
h # g  

or the equivalent eigenvalue equation (valid at high 
energy for small-angle forward scattering) 

2K(sg -y )C ,+  E Ug-hCh =0, (3) 
h ~ g  

in which Ug are structure factors (in A-2), Sg are 
excitation errors, K is the incident wavevector after 
correction for the mean inner potential and 3' the 
conventional Anpassung defined as 

kg U) = K + yU)n + g, (4) 

where n has been chosen as pointing into the crystal 
along the surface-normal direction• 

According to Howie & whelan (1961), the ampli- 
tude vectors u(0)= {~Og(0)} and u ( q ) =  { q g g ( / s )  } o n  the 
upper and lower surfaces of a crystal slab of thickness 
t, are related by a scattering matrix P: 

where 

u(ts) = P(ts)u(0),  (5) 

C =  

P ( t ) = C Y C  ' (6) 

v g  t • . . I ~ g2 v g 2  " " " 
. .  . . .  . . . . . .  

\ ~  g N  ~ g N  " " " 

and 

. .  C ~ I )  Cg~(l) . C g NS(I) / 
- , ( 2 )  ~ , ( 2 )  , ( 2 ) ~  

C_ l= Cg, Cg~ ...  Cg N 

• . : ~ ( N )  \ c : :  c : :  . '/ 
The scattering matrix P for transmission through 

an assembly of crystal slabs is given by the product 
of the scattering matrices for each slab 

y =  

exp (iT(~)t) 

0 

0 

0 
exp (iy(2)t) 

0 

P = P N . . .  P2P1. (7) 

Extension has also been made to include higher- 
order Laue-zone (HOLZ) effects• For details see Peng 
& Whelan (1990). 

It should be noted that the application of the 
general equation (7) is not limited by the thicknesses 
of the crystal slabs involved. For example, although 
the surface layers of a real crystal are typically a 
monolayer or two in thickness, giving reciprocal- 
lattice rods rather than points under the kinematical 
approximation, the excitations of Bloch waves and 
diffracted beams within the surface layers as well as 
in the underlying bulk crystal are not affected by the 
finite thickness of the surface layers• It is an important 
corollary of this fact that although all reflections 
leaving the surface layers will have their beam ampli- 
tudes not very different from the corresponding kine- 
matic values, regardless of whether or not the corre- 
sponding reciprocal-lattice points are on or near the 
Ewald sphere, only those reflections which are 
strongly excited (with g points on or near the Ewald 
sphere) can couple with each other in passing through 
the bulk crystal and need to be treated as 'strong 
beams', despite the fact that they may be as weak as 
other surface superlattice reflections which have not 
been strongly excited. 

3. Some special cases 

3.1. Three-beam uncoupling case 

We now consider a slab system consisting of a 
reconstructed surface layer on the upper face of the 
underlying bulk-crystal slab. The surface layer is 
assumed to be of thickness ts within which two diffrac- 
ted beams, associated with fundamental reflection g 
and surface superlattice reflection h, respectively, are 
strongly excited as in Fig. 1. There exist three distinct 
eigenvalues y~s) (j  = 1, 2, 3) and thus three eigenvec- 
tors within the surface layer: 

( C(o , , c 2  ( j  = 1, 2, 3).  

Omitting the brackets from superscripts, one 
obtains the scattering matrix associated with this 
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surface layer as 

{C~ Cg Cg\/exp(iy't~) 
c : / /  0 

o 

[c*' c*' c*'\ 
×lC*o  I 

\C,o c c ,  V 

"'-/'~*J exp (iTJts) ,._. 0 x., 0 
j = l  

/"' J ~ , j  • --g'--o exp (iTJt~) 

k 'S CJ C*o j exp (/T/t,) 
\ j =  t 

o ) 
e x p  (iTEls) 

0 exp ( iT 2 t~) 

3 
• --o'--g exp (iyJts) 

j = l  

3 
(7 j c * J  v g v g  e x p  (iTJts) 

j = l  

3 
~ J  ~ * J  • --h'--~ exp (iyJt~) 

j = l  

j3~1 C~oC *j exp ( iyq~ 

Y. C~C *~ exp (iTJt,)|. 

Y. C{C *J exp (iyq,)] 

(8) 

g 

• 0 • 0 @ 

• 0 h @  

• 0 • 

• Fundamentan ref l~ct lon 

0 Surface 8uperlattice reflec~Ion 
(a) 

-/ 

Uo 

(b) 

Fig. 1. Schematic diagram showing (a) the diffraction configur- 
ation, in which the intersection of the Ewald sphere with the 
zero-order Laue zone is depicted; (b) diffraction processes in 
passing through the surface layer and underlying bulk crystal. 

Since the vacuum region above the surface layer 
contains only the incident  beam (backscattered beams 
can be safely neglected in the Laue case), the ampli- 
tude vector u(0) on the upper  face of  the surface layer 
can be written as 

~(#h (0)/ 
(9) 

The ampl i tude  vector u(ts) leaving the bot tom face 
of  the surface layer is given by 

( q~o( ts) ~ 
qgg(ts) I =P~u(0)  

3 

~o'--o exp (i~ts) 
j = l  

3 

E /-~j f "  )gJ • ~ g~o exp ( i~ t , )  
j = l  

3 

CJh C *j exp (i32t,) 
j = l  

(10) 

Now consider  the under lying bulk-crystal  slab hav- 
ing thickness t b. Within the underlying bulk-crystal  
slab, reflection h is a trivial one, i.e. Uh = 0  in the 
bulk, since it is associated with a surface superlat t ice 
reflection. From (3) the corresponding three-beam 
eigenvalue equat ion is of  the form 

- 2 K 7  U_g 

Ug 2K(sg -- 3/) 

0 

0 )(co) 
0 Cg =0 ,  

2K(Sh - y) Ch 

(11) 

which gives rise to the following three eigenvalues: 

3/"2 =½{sg + [ s ~ + (  Ug IK)2]'/2}, 
.yt3 = Sh ' 

where the first superscript  on y '  refers to the negative 
sign, and the same convent ion will be used sub- 
sequently.  The three corresponding eigenvectors are 

C1= (C~ 1 , Cg 1 , C~, 1) = (cos ½/3, - s i n  ½/3, 0), 

C 2 = ( C ~2, C 2 ,  C ~2) = (sin ½/3, cos ½/3, 0), 

C 3 = (C~ 3 , C 2 ,  C~, 3) = (0, O, 1), 

where the primes denote  that  all quantit ies are associ- 
ated with the bulk crystal, to distinguish them from 
those of the surface layer, and/3 is Takagi 's  deviat ion 
parameter  defined by (see, for example,  Hirsch, 
Howie, Nicholson,  Pashley & Whelan,  1965) 

cot fl = sg(K/lUg[). (12) 
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The scattering matrix associated with the bulk- 
crystal slab of thickness tb is 

/cos½/3 sin½/3 i ) 
Pb=~-si0½/3 cos½/30 

( exp (i7" tb) 0 0 0 ) 
x 0 exp (i'y'2tb) 

0 0 exp (iT'atb) 

[COS½/3 -sin½/3 i) 
X ~si0½13 COS ½/30 

[ COS 2 ½ fl exp ( i T' 1 tb ) + sin 2 ½ fl exp ( iT '2 tb ) 
= l sin ½ fl cos ½ fl [ exp ( i~'2 tb ) - exp ( iy'x tb ) ] 

sin ½/3 cos ½fl[exp (iy'2tb) - exp (iy 'l tb)] 
sin 2 ½ fl exp (iy' 1 tb ) + COS 2 ½ fl exp ( iy '2 tb) 

0 

0) 
0 

exp ( i,y,3 tb ) 

This gives the diffracted-beam amplitude associated 
with surface superlattice reflection h, 

derivation leading to (10), we obtain the amplitude 
vector u(t~) leaving the upper reconstructed surface 
layer 

l 1 i 4 t"~J ['~*J iTJts) t ~Oo( ts) ~ exp ( 
j 1 

• --g,--o exp (iyJts) 
j = l  

\qh(t.)/ \7=' CjC*'exp(iTJt.)/ 

(15) 

Within the underlying bulk-crystal slab, although 
the interactions between the superlattice reflections 
h and I with either the transmitted beam or the diffrac- 
ted beam resulting from fundamental reflection g are 
zero, the interaction Fourier coefficient between 
the surface superlattice reflections h and 1, Uh-t, is 
not zero. The surface superlattice diffracted beams 
can therefore couple with each other strongly in pas- 
sing through the bulk-crystal slab. The four-beam 

¢ h ( t s + t b ) = ¢ h ( t s ) e x p ( i y ' 3 t b ) ,  (13) 

and the intensity, 

Ih : I~h( ts  + tb)12=l~h(ts)l 2, (14) 

which is entirely unaffected by the underlying bulk 
scattering. A complete uncoupling is achieved in this 
three-beam case. 

3.2. Four-beam self-coupling case 

In the three-beam case discussed in the previous 
section, because the Fourier potential coefficient of 
the surface superlattice reflection h and the Fourier 
coefficient of the interaction potential between the 
superlattice reflection h and fundamental bulk reflec- 
tion g are zero within the underlying bulk slab, the 
intensity of the superlattice reflection h is completely 
unaffected by the diffraction processes of the underly- 
ing bulk-crystal slab. A different situation may occur, 
however, if the Fourier potential coefficients between 
the surface superlattice reflections are not negligible. 
Shown in Fig. 2 are two four-beam self-coupling 
cases. By self coupling we mean that coupling occurs 
either among the surface superlattice reflections or 
among the fundamental bulk reflections. 

Within the surface layer, three diffracted beams are 
strongly excited, a fundamental reflection g and two 
surface-superlattice reflections h and i. Similar to the 

g 
g 

h 1 

O 

(a) (b) 

• Fundamental reflection 

o surfttea staper]attlee reflection 

u/ 
(c) 

Fig. 2. Two four-beam configurations with (a) two symmetric 
surface superlattice reflections and (b) two asymmetric super- 
lattice reflections. Shown in (c) is a schematic diagram of the 
relevant diffraction processes. 



L.-M. PENG AND M. J. WHELAN 105 

eigenvalue equation in this case takes the form 

g 2 K  ( s~ - 7') 0 0 
0 2K(Sh -- T') Uh-t 
0 Ut-h 2 K ( s t -  7') 

/ 'ol 
x/c / 

~C,h I =0,  (16) 

which gives the following four eigenvalues: 

r'"E = ½{s, + [s~, + (  u~ / K)2]i/E}, 
~/t3,4 = $h +½{(s,--s,,)+E(s,--sh)E+(Iu,,-,II K)E] 1/=} 

and the corresponding eigenvectors 

C 1 = (cos ½111, - s in  ½/31,0, 0) 

C E= (sin ½111, cos ½111,0, 0) 

C 3 = (0, 0, cos ½ 112, - s in  ½ 112) 

C 4-- (0, 0, sin ½ 112, cos ½ 112), 

in which 111 and 112 are defined by 

cot 11, = Sg U~]/K, 

cot 112 = (st - Sh ) Uh-j / K. 

The scattering matrix of the bulk slab can be written 
a s  

P2 

with 

_ ( cos E ½ f t  exp (iy 'l tb) + sin 2 ½ f l  exp (i7 '2 tb) 
P1 - \sin ½fl cos lilt [exp ( i~'2tb) -- exp (iy '1 tb) ] 

cos ½ill sin ½fl [exp (i7'2 tb) --exp (i7 '1 tb)]~ 
s in2 ½fl exp (i7 '1 tb) + COS 2 I l l  e x p  (iT'Etb)] 

and 

(cos E ½/31 exp (i7 '3 tb) + sin E ½/31 exp (i7 '4 tb) 
PE = \sin ½131 cos ½/31 [exp (iT'4tb) --exp (iT'3tb)] 

cos ½ f l  sin ½/31 [exp (iy'4 tb) -- exp (i~/'3 t b)]~ 

s inE ½fill exp (i'y'atb) + cos 2 ½fl exp (iT'4tb)] 

X exp (--iShtb), 

where here and subsequently the symbol 0 denotes a 
null matrix of the appropriate order. 

The diffracted-beam amplitudes associated with the 
two surface superlattice reflections h and l are given 
by 

( ~h( t ,+ tt,)~ =pE(~h(ts)~ (18) 
~Pt( ts + tb ) ] \ ~Pt( t, ) ] '  

which leads to 

q)h(ts + tb) = ICON 2 lfll  exp (i'yt3tb) 

+sinE ½111 exp (iy'4tb)] 

x exp (--iShtb)q)h(ts) 

+COS ½111 sin ½/31 [exp (iy'4tb) 

- e x p  (iy'3tb)] exp (--ishtb)~Pt(ts) (19) 

~ot(ts + tb) = {sin ½111 cos ½111 [exp (iy'4tb) 

--exp ( iy'3 tb)] exp (--ishtb)q~h( t~) 

+ [  sine ½ill exp (iy'3tb) 

+ cosE ½111 exp (iy'4tb)] 

X exp (--ishtb)~t(t~). (20) 

In general, the intensities of the surface superlattice 
reflections are strongly coupled with each other. The 
intensities therefore depend on the thickness of the 
bulk slab and will not hold their respective kinemati- 
cal values in passing through the underlying bulk- 
crystal slab. However, if the surface superlattice 
reflections h and I are symmetry related as in the case 
shown in Fig. 2(a),  such that their kinematical 
intensities are equal, 

lh( ts )= I t ( t~)=(I( ts ) ) ,  

where in general ( ) denotes the mean of Ih and It. 
From (18) we have 

( I (  t~ + t b ) }=½[  q)*h( ts + tb) , ~p*( t~ + tb)] 

\ (p,( t~ + tb) ] 

= ½[~Ph*(ts), ~z*(ts)]PEtP2 

\ ~(t~)/' 

where P+ denotes the transposed conjugate complex 
matrix. Since the scattering matrix P is unitary 
(p-1 = p*), 

(I(t~ + tb)> = (I(t~)). (21) 

The averaged intensity of the symmetry-related sur- 
face superlattice reflections is then unaffected by the 
underlying bulk-crystal slab. An uncoupling in the 
averaged intensity is realized in this four-beam self- 
coupling case. It should be noted that when the 
excited surface superlattice reflections are not sym- 
metric, as shown in Fig. 2(b), the above averaging 
procedure will not be applicable. 

3.3. Three-beam cross-coupling case 

In all the previously discussed examples, it has 
been assumed that reconstruction occurs only on the 
upper surface of the bulk-crystal slab. Coupling 
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occurs then only among diffracted beams associated 
either with superlattice reflections or fundamental 
bulk reflections when passing through the bulk-crystal 
slab. In other words, cross coupling between the 
surface superlattice diffracted beams and funda- 
mental-lattice diffracted beams is forbidden. Such a 
cross-coupling case may happen, however, when both 
the top and bottom surfaces of the crystal slab are 
reconstructed. 

In this section we shall consider a three-beam case 
as shown in Fig. 3. We assume that the structure of 
the reconstructed bottom surface is identical to that 
of the top surface, the scattering matrix of the bottom 
surface layer then takes exactly the same form as 
given in § 3.1, equation (8), for the top surface layer. 
The exit amplitude vector u(2t, + tb) is given by 

<nh(2t,+tb)] \~Oh(t:+tb)] 

giving the diffracted-beam amplitude of the super- 
lattice reflection h 

~h(2t, + tb)= { ~ CJhC*oJexp ( i~t,)}~Po( t~ + tb) 
j = l  

• --h,--g exp(i~t~)  ~%(t~+tb) 
j = l  

j = l  

(23) 

To a kinemat ic  approximat ion ,  we may write (see 
Appendix for details) 

3 

~, cJC*o j exp (i3flt,)oc Uh, 
j = l  

3 

Z I"" h ~'" g/'~j/'~*J exp (iT jt~) oc Uh_g ' 
j = l  

3 
E /'~j /"~ *J • --h,--h exp ( irqs) "- 1 

j = l  

and from (13) 

~h ( ts + tb)= tph(ts) exp ( i3/3 tb ) 

• --h,--o exp (i~ts) exp (iy'3tb) 
j = l  

oCUh. 

Equation (23) can then be approximated as 

~Oh('2ts + tb)OC aUh~o( t~ + tb) 
+ bUh_g~(  t~ + tb)+ CUh, (24) 

where a, b and c are constants of the same order of 
magnitude. For cases where the projected atomic 
positions of the lower surface towards the surface 
plane do not coincide with those of the upper surface, 
a phase factor needs to be included in a and b to 
take account of the shift of the coordinate origin of 
the lower surface. It is obvious from the above 
expression that in general the intensity of the superlat- 
tice reflection h will not retain its kinematic value as 
represented by the third term. However, if the bulk 
slab is so thin that the transmitted beam is still much 
stronger than the diffracted beam after passing 
through the bulk crystal slab, i.e. 

I~'o =1>> ~g, 

we then have from (24) 

~Oh(2ts+tb)OCaUh+CUhOZUh. (25) 

It should be emphasized that this result holds only 
when the kinematical approximation is valid for the 
whole crystal system, which is composed of the top 
reconstructed surface layer, bulk slab and the bottom 
reconstructed surface layer. 

• o 

0 _ ~ ~ 0  O • 
(a) 

uo/ 
& 

a, a, 
uo/ 

(b)  

Fig. 3. Schematic diagrams of (a) diffraction conditions and (b) 
diffraction processes in passing through the whole crystal. 
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4. General cases 

In general, many diffracted beams may be strongly 
excited, in particular when the incident electrons are 
propagating near a zone axis. The diffraction proces- 
ses could differ appreciably from three- or four-beam 
cases as previously discussed. To extend the previous 
analysis, we now consider a general case in which 
many surface superlattice reflections as well as many 
fundamental reflections are excited. 

When only the upper surface of the crystal slab is 
reconstructed, none of the surface superlattice reflec- 
tions will be able to couple with fundamental reflec- 
tions in passing through the bulk crystal slab. This is 
because in the bulk crystal superlattice reflections are 
all trivial ones in the sense that all Fourier potential 
coefficients associated with the scattering to funda- 
mental reflections are zero. To see this, we write the 
fundamental reflections as Bi (i= 1, 2 , . . . )  and sur- 
face superlattice reflections Si ( i=1 ,2 , . . . ) .  The 
eigenvalue equation (3) can then be written in the 
form 

UB, o 2 K ( sB, - 3') . . .  Us, st Cs, 

s " " " " I =0" ,o Us,~, . . .  2K(ssl-  Y) , 

(26) 

Within the bulk crystal, this eigenvalue equation 
may be simplified, noticing that we have Us, Bin = 0 in 
general, we get 

where 

Ms] \Cs]  =0 (27) 

MB 

M s  

and 

2Ky Uon, ... UoB. .. i. t = ,o 2K(sa,: - Y) .. .:  US, B . :  , 

.o Us.B, . . .  2 K  (ss .  - 30 

2K(ss,-  y) . . .  Usts. "" i) 
= 

I U ~ s l  " " 2 K ( s s .  - 7 ) :  

(ct c. ? l+J cs l+J 

For a non-trivial solution, the determinant of the 
matrix in (27) must be zero: 

]M" 0I=MBMs=0, 
0 M s  

giving two groups of eigenvalues, associated with 
fundamental reflections and superlattice reflections, 
respectively, 

' ( i =  1,2,  ) ] /B . . .  

i "),s (i = 1, 2 , . . .  ), 

which in turn result in two groups of eigenvectors 

and 

 i=1,2, 

{0} ] 
{C~}] ( i=  1 ,2 , . . . ) .  

By substituting the following eigenvector matrices, 

c=( {c~'}o 
c-l=( {C~}-IO 

and eigenvalue matrix, 

y = ( {exp ( iy~tb 

o) 
{c~} ' 

o ) 
{exp ( i~,~tb )} ' 

into (6) we obtain the scattering matrix P for the 
bulk-crystal slab 

0 {~s}/  

x({exp(iyiBtb)} 0 , 
0 {exp(iy~tb)}) 

{{ C~}{exp (i~,; tb)}{ C~} -1 
\ 0 

{ Ci}{exp (i~,~tb)}{ C~}-']' 
(28) 

and the diffracted-beam amplitudes on leaving the 
lower surface of the crystal slab, 

{ ~PB,( ts + tb)} = { C;}{exp (iy;tb)} 
i -1  x{CB} {~oB,(ts)} (29) 

{~Os,(ts + tb)} = { C~}{exp (iy~stb)} 

x{C~s}-'{q~s,(t,)}. (30) 
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The two groups of fundamental and superlattice 
reflections are therefore completely uncoupled from 
each other and are diffracted by the bulk crystal slab 
independently. Coupling is allowed, however, 
between reflections within the same group, i.e. either 
between fundamental reflections or between surface 
superlattice reflections. 

The procedure of grouping may be further applied 
to subsets of surface superlattice reflections. A subset 
of superlattice reflections is defined as a group of 
superlattice reflections which can be connected to 
each other by a fundamental reflection vector, i.e. 

S~'- S; = Bk, 

where a superscript n has been used to denote the 
subset index. Since 

we then have 

$ 7 - S ; '  # B k ( n  # m ) ,  

UsT~ = 0 

for all interacting Fourier potential coefficients 
between superlattice reflections belonging to different 
subsets, that is coupling between superlattice reflec- 
tions in different subsets is forbidden in the bulk 
crystal. Following the same procedure leading to (30), 
we obtain 

{¢psT( t s+ tb ) }=  i • i { C sT}{exp (~ys':tb)} 

X{ i --1 CsT} {q~sT(t,)}. (31) 

In the extreme, when a subset of superlattice reflec- 
tions consists of only one reflection, Cs7 = 1, i.e. as in 
Fig. l(a).  The diffracted-beam amplitude of this 
superlattice reflection after passing through the bulk 
slab is derived from the above general expression 
(31): 

~sT( ts + tb ) = exp (iTsTtb)~sT(t~), 

and the intensity 

IsT( ts + tb ) = IsT( t~ ), 

which is completely unaffected by the underlying 
bulk-crystal slab. When the surface-layer diffraction 
can be treated kinematically, the intensity of this 
superlattice reflection will have a kinematical value 
which is proportional to U~-; and this kinematical 
value will be preserved in passing through the under- 
lying bulk crystal regardless of its thickness tb. 

A different but interesting case occurs if within a 
subset of superlattice reflections only those reflec- 
tions which are entirely symmetry related have been 
strongly excited such that 

IsT( ts)  = I s ~ ( t s ) = . . . = ( I s . ( t s ) > .  

The averaged intensity of these symmetry-related 
superlattice reflections after passing through the 

underlying bulk crystal is given by 

( I s , (  t~ + tb)) = N-l{q~/, (ts + tb)}{q~sT( ts + tb)} 

= N - l { ¢ ~ . ( t , ) } { q ~ s T ( t s ) }  

= ( l s " ( t s ) ) ,  (32) 

where N is the total number of symmetry-related 
reflections in the same subset which are strongly 
excited. The averaged intensity is thus independent 
of the bulk-crystal slab. We have then an uncoupling 
case in the averaged intensity of the subset of super- 
lattice reflections. 

5. Concluding remarks 

A Bloch-wave analysis has been applied to the coup- 
ling problem in the TED analysis of reconstructed 
surfaces. The great success of TED in determining 
the structure of reconstructed surfaces is rooted in 
the validity of the kinematical approximation for the 
intensities of the surface superlattice reflections. The 
validity of the kinematic approximation depends 
primarily on the uncoupling of the surface-layer 
superlattice scattering from underlying bulk scat- 
tering. 

Three categories of coupling, i.e. self coupling, 
cross coupling and complete uncoupling in either the 
intensity of a single superlattice reflection or an 
averaged intensity among a group of symmetry- 
related superlattice reflections, are distinguished. 

When the electrons are incident on the top recon- 
structed surface layer of a bulk crystal, both funda- 
mental and surface superlattice reflections may be 
excited. In the case when the surface layer is thin 
enough and the scattering power of the surface atoms 
is not very strong, a kinematical (single-scattering) 
approximation may be applied to the diffraction 
processes of the entrance surface layer. 

In passing through the underlying bulk-crystal slab, 
only self coupling is allowed, that is coupling may 
occur between either fundamental reflections or 
superlattice reflections but not between each other. 
Furthermore, all superlattice reflections can be 
grouped into subsets in accordance with whether they 
are related by fundamental reciprocal-lattice vectors. 
Coupling between superlattice reflections in different 
subsets is forbidden. Diffracted beams travel through 
the bulk-crystal slab in groups. Each group is totally 
unaffected by diffraction processes resulting from 
reflections belonging to any other groups. On leaving 
the bulk-crystal slab, if a subset of superlattice reflec- 
tions consists of only one reflection, the intensity of 
the superlattice reflection will be the same as when 
entering the bulk slab, and the kinematical value of 
the intensity is preserved. If a subset is composed of 
entirely symmetry-related superlattice reflections, the 
averaged intensity of the subset superlattice reflec- 
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tions will maintain its intensity constant in passing 
through the bulk crystal. The procedure of averaging 
cannot, however, be applied to reflections belonging 
to different subsets, and to subsets which are not 
composed entirely of symmetry-related reflections. 

When the bottom surface of the bulk slab is also 
reconstructed, cross coupling is then allowed between 
fundamental reflections and superlattice reflections. 
Unless the whole-crystal slab is extremely thin so that 
only single-scattering processes occur in passing 
through the entrance reconstructed surface, the 
underlying bulk slab and the exit reconstructed sur- 
face, the kinematical values of the intensities of 
surface superlattice reflections will not be preserved 
in general. 

A different but interesting case (i.e. when the sur- 
face reconstruction occurs only on the bottom face 
of the bulk-crystal slab) has also been recently pro- 
posed as an alternative to the above-mentioned case 
(Nakai, 1988; Takayanagi, 1990). It should be noted, 
however, that the uncoupling mechanism of superlat- 
tice reflections in the latter case is entirely different 
from that being discussed in the present paper. A 
complete uncoupling can be achieved when and only 
when there is no Bragg diffraction of the incident 
beam in passing through the bulk-crystal slab. 

Lastly, it is worth mentioning that although our 
analysis has been applied to reconstructed surfaces, 
it can also be applied to any other surfaces giving 
reflections which do not entirely coincide with funda- 
mental reflections. 

By multiplying the above equation from the left by 
C *(j) and summing over j we obtain 

2 K  Z C*(J)T(J)C~J)=2Ksg Z c~(J)C(g  j) 
J j 

+ y c j) 
h#g j 

= 2KsgiSig + Ug-t(1 - 6tg). 

To a first approximation in the surface-layer thick- 
ness ts, we may write 

exp ( iy(J)ts) --- 1 + iy(J)ts, 

and therefore in general 

c,,(J)c,(J) exp (iy~J)ts) ~'-'g ~,-~h 
J 

--~Z C*(J)( 1 + iY(J)ts)C~ j) 
J 

= 8gh + its[Sg6hg + (  U h _ g / 2 K ) ( 1  --6hg)]. 

For the case where g = 0 and h # 0, we have 

'--hC'(J)c'*(J)'--0 exp (iy(J)t~) = ( i / 2 K ) t s U h  oc Uh, 
J 

for g # h  and g # 0 ,  h ~ 0 ,  

I-: hF'(j)['~*(j)~..-,g exp (iy(J)ts) "" ( i /2K) tsUh_gOC Uh_g , 
J 

and 

~, C(hJ) C *~j) exp ( iy(J) t~) ~- 8hh = 1. 
J 
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A P P E N D I X  

In the transmission Laue case, the fundamental eigen- 
value equation takes the form 

2 K ( s g - y ( J ) ) c ( g J )  + ~ Ug-hC(hJ)=o. 
h#g 
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